Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(21): eabn3925, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35613257

RESUMO

Sodium-proton exchanger 3 (NHE3/SLC9A3) located in the apical membrane of renal and gastrointestinal epithelia mediates salt and fluid absorption and regulates pH homeostasis. As an auxiliary regulatory factor of NHE proteins, calcineurin B homologous protein 1 (CHP1) facilitates NHE3 maturation, plasmalemmal expression, and pH sensitivity. Dysfunctions of NHE3 are associated with renal and digestive system disorders. Here, we report the cryo-electron microscopy structure of the human NHE3-CHP1 complex in its inward-facing conformation. We found that a cytosolic helix-loop-helix motif in NHE3 blocks the intracellular cavity formed between the core and dimerization domains, functioning as an autoinhibitory element and hindering substrate transport. Furthermore, two phosphatidylinositol molecules are found to bind to the peripheric juxtamembrane sides of the complex, function as anchors to stabilize the complex, and may thus enhance its transport activity.

2.
Nat Commun ; 12(1): 3474, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108458

RESUMO

Sodium/proton exchanger 1 (NHE1) is an electroneutral secondary active transporter present on the plasma membrane of most mammalian cells and plays critical roles in regulating intracellular pH and volume homeostasis. Calcineurin B-homologous protein 1 (CHP1) is an obligate binding partner that promotes NHE1 biosynthetic maturation, cell surface expression and pH-sensitivity. Dysfunctions of either protein are associated with neurological disorders. Here, we elucidate structures of the human NHE1-CHP1 complex in both inward- and inhibitor (cariporide)-bound outward-facing conformations. We find that NHE1 assembles as a symmetrical homodimer, with each subunit undergoing an elevator-like conformational change during cation exchange. The cryo-EM map reveals the binding site for the NHE1 inhibitor cariporide, illustrating how inhibitors block transport activity. The CHP1 molecule differentially associates with these two conformational states of each NHE1 monomer, and this association difference probably underlies the regulation of NHE1 pH-sensitivity by CHP1.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Trocador 1 de Sódio-Hidrogênio/química , Trocador 1 de Sódio-Hidrogênio/metabolismo , Sítios de Ligação , Transporte Biológico , Microscopia Crioeletrônica , Guanidinas/metabolismo , Humanos , Modelos Moleculares , Complexos Multiproteicos , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Sulfonas/metabolismo
3.
J Biol Chem ; 295(20): 7075-7095, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32277048

RESUMO

Genetic screening has identified numerous variants of the endosomal solute carrier family 9 member A6 (SLC9A6)/(Na+,K+)/H+ exchanger 6 (NHE6) gene that cause Christianson syndrome, a debilitating X-linked developmental disorder associated with a range of neurological, somatic, and behavioral symptoms. Many of these variants cause complete loss of NHE6 expression, but how subtler missense substitutions or nonsense mutations that partially truncate its C-terminal cytoplasmic regulatory domain impair NHE6 activity and endosomal function are poorly understood. Here, we describe the molecular and cellular consequences of six unique mutations located in the N-terminal cytoplasmic segment (A9S), the membrane ion translocation domain (L188P and G383D), and the C-terminal regulatory domain (E547*, R568Q, and W570*) of human NHE6 that purportedly cause disease. Using a heterologous NHE6-deficient cell expression system, we show that the biochemical, catalytic, and cellular properties of the A9S and R568Q variants were largely indistinguishable from those of the WT transporter, which obscured their disease significance. By contrast, the L188P, G383D, E547*, and W570* mutants exhibited variable deficiencies in biosynthetic post-translational maturation, membrane sorting, pH homeostasis in recycling endosomes, and cargo trafficking, and they also triggered apoptosis. These findings broaden our understanding of the molecular dysfunctions of distinct NHE6 variants associated with Christianson syndrome.


Assuntos
Ataxia , Endossomos , Epilepsia , Doenças Genéticas Ligadas ao Cromossomo X , Deficiência Intelectual , Microcefalia , Mutação de Sentido Incorreto , Transtornos da Motilidade Ocular , Trocadores de Sódio-Hidrogênio , Substituição de Aminoácidos , Animais , Ataxia/genética , Ataxia/metabolismo , Cricetinae , Endossomos/química , Endossomos/genética , Endossomos/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Transtornos da Motilidade Ocular/genética , Transtornos da Motilidade Ocular/metabolismo , Domínios Proteicos , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
4.
Sci Rep ; 9(1): 11430, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391572

RESUMO

Cell migration is an important biological phenomenon involved in many homeostatic and aberrant physiological processes. Phosphorylation of the focal adhesion adaptor protein, paxillin, on serine 273 (S273) has been implicated as a key regulator of cell migration. Here, it is shown that phosphorylation on paxillin S273 leads to highly migratory cells with small dynamic adhesions. Adhesions at protrusive edges of the cell were more dynamic than adhesions at retracting edges. Temporal image correlation microscopy revealed that these dynamic adhesions undergo rapid binding of paxillin, PAK1 and ßPIX. We identified membrane proximal adhesion subdomains in protrusive regions of the cell that show rapid protein binding that is dependent on paxillin S273 phosphorylation, PAK1 kinase activity and phosphatases. These dynamic adhesion subdomains corresponded to regions of the adhesion that also show co-binding of paxillin/PAK1 and paxillin/ßPIX complexes. It is likely that parts of individual adhesions are more dynamic while others are less dynamic due to their association with the actin cytoskeleton. Variable adhesion and binding dynamics are regulated via differential paxillin S273 phosphorylation across the cell and within adhesions and are required for regulated cell migration. Dysregulation through phosphomutants, PAK1-KD or ßPIX mutants resulted in large stable adhesions, long protein binding times and slow cell migration. Dysregulation through phosphomimics or PAK1-CA led to small dynamic adhesions and rapid cell migration reminiscent of highly migratory cancer cells. Thus, phosphorylation of paxillin S273 is a key regulator of cell migration through recruitment of ßPIX and PAK1 to sites of adhesion.


Assuntos
Adesão Celular , Movimento Celular , Paxilina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Células CHO , Cricetulus , Microscopia Intravital , Microscopia de Fluorescência , Mutação , Paxilina/genética , Fosforilação/genética , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Serina/genética , Serina/metabolismo , Quinases Ativadas por p21/genética
5.
Neurobiol Dis ; 130: 104490, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31175985

RESUMO

Christianson Syndrome is a rare but increasingly diagnosed X-linked intellectual disability disorder that arises from mutations in SLC9A6/NHE6, a pH-regulating transporter that localizes to early and recycling endosomes. We have recently reported that one of the originally identified disease-causing mutations in NHE6 (p.E287-S288del, or ΔES) resulted in a loss of its pH regulatory function. However, the impact of this mutation upon neuronal synapse formation and plasticity is unknown. Here, we investigate the consequences of the ΔES mutant upon mouse hippocampal pyramidal neurons by expressing a fluorescently-labeled ΔES NHE6 construct into primary hippocampal neurons. Neurons expressing the ΔES mutant showed significant reductions in mature dendritic spine density with a concurrent increase in immature filopodia. Furthermore, compared to wild-type (WT), ΔES-containing endosomes are redirected away from early and recycling endosomes toward lysosomes. In parallel, the ΔES mutant reduced the trafficking of glutamatergic AMPA receptors to excitatory synapses and increased their accumulation within lysosomes for potential degradation. Upon long-term potentiation (LTP), neurons expressing ΔES failed to undergo significant structural and functional changes as observed in controls and WT transfectants. Interestingly, synapse density and LTP-induced synaptic remodeling in ΔES-expressing neurons were partially restored by bafilomycin, a vesicular alkalinisation agent, or by leupeptin, an inhibitor of lysosomal proteolytic degradation. Overall, our results demonstrate that the ∆ES mutation attenuates synapse density and structural and functional plasticity in hippocampal neurons. These deficits may be partially due to the mistargeting of AMPA receptors and other cargos to lysosomes, thereby preventing their trafficking during synaptic remodeling. This mechanism may contribute to the cognitive learning deficits observed in patients with Christianson Syndrome and suggests a potential therapeutic strategy for treatment.


Assuntos
Ataxia/genética , Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Hipocampo/metabolismo , Hipocampo/patologia , Deficiência Intelectual/genética , Microcefalia/genética , Plasticidade Neuronal/genética , Transtornos da Motilidade Ocular/genética , Trocadores de Sódio-Hidrogênio/genética , Animais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Camundongos , Mutação , Transporte Proteico/genética , Receptores de AMPA/metabolismo
6.
Beilstein J Nanotechnol ; 10: 9-21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30680275

RESUMO

Zn/F co-doped SnO2 nanoparticles with a mean diameter of less than 15 nm and a narrow size distribution were synthesized by a one-step laser pyrolysis technique using a reactive mixture containing tetramethyltin (SnMe4) and diethylzinc (ZnEt2) vapors, diluted Ar, O2 and SF6. Their structural, morphological, optical and electrical properties are reported in this work. The X-ray diffraction (XRD) analysis shows that the nanoparticles possess a tetragonal SnO2 crystalline structure. The main diffraction patterns of stannous fluoride (SnF2) were also identified and a reduction in intensity with increasing Zn percentage was evidenced. For the elemental composition estimation, energy dispersion X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) measurements were performed. In general, both analyses showed that the Zn percentage increases with increasing ZnEt2 flow, accompanied at the same time by a decrease in the amount of F in the nanopowders when the same SF6 flow was employed. The Raman spectra of the nanoparticles show the influence of both Zn and F content and crystallite size. The fluorine presence is due to the catalytic partial decomposition of the SF6 laser energy transfer agent. In direct correlation with the increase in the Zn doping level, the bandgap of co-doped nanoparticles shifts to lower energy (from 3.55 to 2.88 eV for the highest Zn dopant concentration).

7.
Neurobiol Dis ; 121: 187-204, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296617

RESUMO

Loss-of-function mutations in the recycling endosomal (Na+,K+)/H+ exchanger gene SLC9A6/NHE6 result in overacidification and dysfunction of endosomal-lysosomal compartments, and cause a neurodevelopmental and degenerative form of X-linked intellectual disability called Christianson Syndrome (CS). However, knowledge of the disease heterogeneity of CS is limited. Here, we describe the clinical features and underlying molecular and cellular mechanisms associated with a CS patient carrying a de novo missense variant (p.Gly218Arg; G218R) of a conserved residue in its ion translocation domain that results in a potential gain-of-function. The patient manifested several core symptoms typical of CS, including pronounced cognitive impairment, mutism, epilepsy, ataxia and microcephaly; however, deterioration of motor function often observed after the first decade of life in CS children with total loss of SLC9A6/NHE6 function was not evident. In transfected non-neuronal cells, complex glycosylation and half-life of the G218R were significantly decreased compared to the wild-type transporter. This correlated with elevated ubiquitination and partial proteasomal-mediated proteolysis of G218R. However, a major fraction was delivered to the plasma membrane and endocytic pathways. Compared to wild-type, G218R-containing endosomes were atypically alkaline and showed impaired uptake of recycling endosomal cargo. Moreover, instead of accumulating in recycling endosomes, G218R was redirected to multivesicular bodies/late endosomes and ejected extracellularly in exosomes rather than progressing to lysosomes for degradation. Attenuated acidification and trafficking of G218R-containing endosomes were also observed in transfected hippocampal neurons, and correlated with diminished dendritic branching and density of mature mushroom-shaped spines and increased appearance of filopodia-like protrusions. Collectively, these findings expand our understanding of the genetic diversity of CS and further elucidate a critical role for SLC9A6/NHE6 in fine-tuning recycling endosomal pH and cargo trafficking, processes crucial for the maintenance of neuronal polarity and mature synaptic structures.


Assuntos
Ataxia/genética , Ataxia/patologia , Endossomos/metabolismo , Epilepsia/genética , Epilepsia/patologia , Mutação com Ganho de Função , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Microcefalia/genética , Microcefalia/patologia , Neurônios/patologia , Transtornos da Motilidade Ocular/genética , Transtornos da Motilidade Ocular/patologia , Trocadores de Sódio-Hidrogênio/genética , Adulto , Animais , Atrofia , Cricetulus , Dendritos/patologia , Vesículas Extracelulares/metabolismo , Células HeLa , Hipocampo/patologia , Humanos , Masculino , Mutação de Sentido Incorreto , Trocadores de Sódio-Hidrogênio/química , Adulto Jovem
8.
Hum Mol Genet ; 28(4): 598-614, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30335141

RESUMO

We report two unrelated families with multigenerational nonsyndromic intellectual disability (ID) segregating with a recurrent de novo missense variant (c.1543C>T:p.Leu515Phe) in the alkali cation/proton exchanger gene SLC9A7 (also commonly referred to as NHE7). SLC9A7 is located on human X chromosome at Xp11.3 and has not yet been associated with a human phenotype. The gene is widely transcribed, but especially abundant in brain, skeletal muscle and various secretory tissues. Within cells, SLC9A7 resides in the Golgi apparatus, with prominent enrichment in the trans-Golgi network (TGN) and post-Golgi vesicles. In transfected Chinese hamster ovary AP-1 cells, the Leu515Phe mutant protein was correctly targeted to the TGN/post-Golgi vesicles, but its N-linked oligosaccharide maturation as well as that of a co-transfected secretory membrane glycoprotein, vesicular stomatitis virus G (VSVG) glycoprotein, was reduced compared to cells co-expressing SLC9A7 wild-type and VSVG. This correlated with alkalinization of the TGN/post-Golgi compartments, suggestive of a gain-of-function. Membrane trafficking of glycosylation-deficient Leu515Phe and co-transfected VSVG to the cell surface, however, was relatively unaffected. Mass spectrometry analysis of patient sera also revealed an abnormal N-glycosylation profile for transferrin, a clinical diagnostic marker for congenital disorders of glycosylation. These data implicate a crucial role for SLC9A7 in the regulation of TGN/post-Golgi pH homeostasis and glycosylation of exported cargo, which may underlie the cellular pathophysiology and neurodevelopmental deficits associated with this particular nonsyndromic form of X-linked ID.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Complexo de Golgi/genética , Deficiência Intelectual/genética , Trocadores de Sódio-Hidrogênio/genética , Ácidos/metabolismo , Animais , Células CHO , Membrana Celular/genética , Cricetinae , Cricetulus , Regulação da Expressão Gênica/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Glicosilação , Complexo de Golgi/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Glicoproteínas de Membrana/genética , Mutação de Sentido Incorreto/genética , Transporte Proteico/genética , Transfecção , Proteínas do Envelope Viral/genética , Rede trans-Golgi/genética
9.
Mol Neurodegener ; 11(1): 63, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27590723

RESUMO

BACKGROUND: Christianson Syndrome, a recently identified X-linked neurodevelopmental disorder, is caused by mutations in the human gene SLC9A6 encoding the recycling endosomal alkali cation/proton exchanger NHE6. The patients have pronounced limitations in cognitive ability, motor skills and adaptive behaviour. However, the mechanistic basis for this disorder is poorly understood as few of the more than 20 mutations identified thus far have been studied in detail. METHODS: Here, we examined the molecular and cellular consequences of a 6 base-pair deletion of amino acids Glu(287) and Ser(288) (∆ES) in the predicted seventh transmembrane helix of human NHE6 expressed in established cell lines (CHO/AP-1, HeLa and neuroblastoma SH-SY5Y) and primary cultures of mouse hippocampal neurons by measuring levels of protein expression, stability, membrane trafficking, endosomal function and cell viability. RESULTS: In the cell lines, immunoblot analyses showed that the nascent mutant protein was properly synthesized and assembled as a homodimer, but its oligosaccharide maturation and half-life were markedly reduced compared to wild-type (WT) and correlated with enhanced ubiquitination leading to both proteasomal and lysosomal degradation. Despite this instability, a measurable fraction of the transporter was correctly sorted to the plasma membrane. However, the rates of clathrin-mediated endocytosis of the ∆ES mutant as well as uptake of companion vesicular cargo, such as the ligand-bound transferrin receptor, were significantly reduced and correlated with excessive endosomal acidification. Notably, ectopic expression of ∆ES but not WT induced apoptosis when examined in AP-1 cells. Similarly, in transfected primary cultures of mouse hippocampal neurons, membrane trafficking of the ∆ES mutant was impaired and elicited marked reductions in total dendritic length, area and arborization, and triggered apoptotic cell death. CONCLUSIONS: These results suggest that loss-of-function mutations in NHE6 disrupt recycling endosomal function and trafficking of cargo which ultimately leads to neuronal degeneration and cell death in Christianson Syndrome.


Assuntos
Ataxia/genética , Endocitose/fisiologia , Endossomos/metabolismo , Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Microcefalia/genética , Neurônios/metabolismo , Transtornos da Motilidade Ocular/genética , Deleção de Sequência/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Encéfalo/metabolismo , Morte Celular , Linhagem Celular Tumoral , Endossomos/genética , Humanos , Camundongos , Transporte Proteico/genética , Trocadores de Sódio-Hidrogênio/genética
10.
Neurochem Int ; 73: 192-203, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24090639

RESUMO

Na(+)/H(+) exchanger NHE6/SLC9A6 is an X-linked gene that is widely expressed and especially abundant in brain, heart and skeletal muscle where it is implicated in endosomal pH homeostasis and trafficking as well as maintenance of cell polarity. Recent genetic studies have identified several mutations in the coding region of NHE6 that are linked with severe intellectual disability, autistic behavior, ataxia and other abnormalities. One such defect consists of an in-frame deletion of three amino acids ((370)Trp-Ser-Thr(372), ΔWST) that adjoin the predicted ninth transmembrane helix of the exchanger. To better understand the nature of this mutation, a NHE6ΔWST construct was generated and assessed for its effects on the biochemical and cellular properties of the transporter. In transfected fibroblastic CHO and neuroblastoma SH-SY5Y cells, immunoblot analyses showed that the mutant protein was effectively synthesized, but its subsequent oligosaccharide maturation and overall half-life were dramatically reduced compared to wild-type. These changes correlated with significant accumulation of ΔWST in the endoplasmic reticulum, with only minor sorting to the plasma membrane and negligible trafficking to recycling endosomes. The diminished accumulation in recycling endosomes was associated with a significant decrease in the rate of endocytosis of cell surface ΔWST compared to wild-type. Furthermore, while ectopic expression of wild-type NHE6 enhanced the uptake of other vesicular cargo such as transferrin along the clathrin-mediated recycling endosomal pathway, this ability was lost in the ΔWST mutant. Similarly, in transfected primary mouse hippocampal neurons, wild-type NHE6 was localized in discrete puncta throughout the soma and neurites, whereas the ΔWST mutant displayed a diffuse reticular pattern. Remarkably, the extensive dendritic arborization observed in neurons expressing wild-type NHE6 was noticeably diminished in ΔWST-transfectants. These results suggest that deletion of (370)Trp-Ser-Thr(372) leads to endoplasmic reticulum retention and loss of NHE6 function which potentially impacts the trafficking of other membrane-bound cargo and cell polarity.


Assuntos
Transtorno Autístico/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Deficiência Intelectual/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Transtorno Autístico/genética , Biotinilação , Células CHO , Polaridade Celular/genética , Cricetinae , Cricetulus , Dendritos/genética , Dendritos/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Deleção de Genes , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Mutação/genética , Processamento de Proteína Pós-Traducional , Trocadores de Sódio-Hidrogênio/genética
11.
J Neurosci ; 33(2): 595-610, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23303939

RESUMO

Postsynaptic endosomal trafficking has emerged as a principal regulatory mechanism of structural and functional plasticity of glutamatergic synapses. Recycling endosomes perform activity-dependent transport of AMPA receptors (AMPARs) and lipids to the postsynaptic membrane, activities that are known to contribute to long-term synaptic potentiation and hypothesized to subserve learning and memory processes in the brain. Recently, genetic defects in a widely expressed vesicular pH-regulating transporter, the Na(+)/H(+) exchanger NHE6 isoform, have been implicated in neurodevelopmental disorders including severe X-linked mental retardation and autism. However, little information is available regarding the cellular properties of this transporter in the CNS. Here, we show by quantitative light microscopy that the protein abundance of NHE6 is developmentally regulated in area CA1 of the mouse hippocampus. Within pyramidal neurons, NHE6 was found to localize to discrete puncta throughout the soma and neurites, with noticeable accumulation at dendritic spines and presynaptic terminals. Dual immunolabeling of dendritic spines revealed that NHE6 partially colocalizes with typical markers of early and recycling endosomes as well as with the AMPAR subunit GluA1. Significantly, NHE6-containing vesicles exhibited enhanced translocation to dendritic spine heads during NMDA receptor (NMDAR)-dependent long-term potentiation. These data suggest that NHE6 may play a unique, previously unrecognized, role at glutamatergic synapses that are important for learning and memory.


Assuntos
Espinhas Dendríticas/metabolismo , Endossomos/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Recrutamento Neurofisiológico/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Western Blotting , Células CHO , Células Cultivadas , Centrifugação , Cricetinae , Cricetulus , Espinhas Dendríticas/ultraestrutura , Endossomos/ultraestrutura , Imunofluorescência , Glicina/fisiologia , Hipocampo/citologia , Hipocampo/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Técnicas de Cultura de Órgãos , Células Piramidais/ultraestrutura , Receptores de AMPA/genética , Receptores de AMPA/fisiologia
12.
Adv Exp Med Biol ; 961: 397-410, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23224898

RESUMO

The pH milieu of the central and peripheral nervous systems is an important determinant of neuronal excitability, function, and survival. In mammals, neural acid-base homeostasis is coordinately regulated by ion transporters belonging to the Na(+)/H(+) exchanger (NHE) and bicarbonate transporter gene families. However, the relative contributions of individual isoforms within the respective families are not fully understood. This report focuses on the NHE family, specifically the plasma membrane-type NHE5 which is preferentially transcribed in brain, but the distribution of the native protein has not been extensively characterized. To this end, we generated a rabbit polyclonal antibody that specifically recognizes NHE5. In both central (cortex, hippocampus) and peripheral (superior cervical ganglia, SCG) nervous tissue of mice, NHE5 immunostaining was punctate and highly concentrated in the somas and to lesser amounts in the dendrites of neurons. Very little signal was detected in axons. Similarly, in primary cultures of differentiated SCG neurons, NHE5 localized predominantly to vesicles in the somatodendritic compartment, though some immunostaining was also evident in punctate vesicles along the axons. NHE5 was also detected predominantly in intracellular vesicles of cultured SCG glial cells. Dual immunolabeling of SCG neurons showed that NHE5 did not colocalize with markers for early endosomes (EEA1) or synaptic vesicles (synaptophysin), but did partially colocalize with the transferrin receptor, a marker of recycling endosomes. Collectively, these data suggest that NHE5 partitions into a unique vesicular pool in neurons that shares some characteristics of recycling endosomes where it may serve as an important regulated store of functional transporters required to maintain cytoplasmic pH homeostasis.


Assuntos
Axônios/metabolismo , Encéfalo/metabolismo , Endossomos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Encéfalo/citologia , Células Cultivadas , Endossomos/genética , Concentração de Íons de Hidrogênio , Camundongos , Proteínas do Tecido Nervoso/genética , Neuroglia/citologia , Coelhos , Trocadores de Sódio-Hidrogênio/genética , Vesículas Sinápticas/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
13.
Membranes (Basel) ; 2(3): 529-52, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24958295

RESUMO

In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

14.
Pancreatology ; 5(4-5): 443-9, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15985770

RESUMO

BACKGROUND/AIM: Pancreatic acinar cells are involved in the secretion of digestive enzymes. Digestive enzymes in pancreatic acinar cells are stored in membrane-bound secretory vesicles called zymogen granules (ZGs). The swelling of ZGs is implicated in the regulation of the expulsion of intravesicular contents during secretion. The molecular mechanism of ZG swelling has been previously elucidated. It has been further demonstrated that the water channel aquaporin-1, the potassium channel IRK-8, and the chloride channel CLC-2, are present in the ZG membrane and involved in ZG swelling. However, a direct measurement of these ion channels at the ZG membrane in intact ZGs had not been performed. The aim of this study was to investigate the electrical activity of single ZGs and verify the types of channels found within their membrane. METHODS: ZGs from pancreatic acinar cells were isolated from the pancreas of Sprague-Dawley rats. Direct measurements of whole vesicle currents, in the presence and absence of ion channel blockers (quinine, glyburide and DIDS), were recorded following successful patching of single ZGs. CONCLUSION: In this study, we were able, for the first time, to patch single ZGs and study ion channels in their membrane. We were able to record currents across the ZG membrane and, utilizing ion channel blockers, confirm the presence of the chloride channels CLC-2 and the potassium channel IRK-8 (Kir6.1), and additionally demonstrate the presence of a second chloride channel CLC-3.


Assuntos
Precursores Enzimáticos/metabolismo , Canais Iônicos/metabolismo , Pâncreas/enzimologia , Técnicas de Patch-Clamp/métodos , Vesículas Secretórias/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Aquaporina 1 , Aquaporinas/metabolismo , Canais de Cloro CLC-2 , Canais de Cloreto/metabolismo , Canais Iônicos/antagonistas & inibidores , Canais KATP , Masculino , Microscopia de Força Atômica , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Ratos Sprague-Dawley , Vesículas Secretórias/efeitos dos fármacos
16.
Cell Biol Int ; 28(1): 7-17, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14759764

RESUMO

Aquaporins (AQP) are involved in rapid and active gating of water across biological membranes. The molecular regulation of AQP is unknown. Here we report the isolation, identification and reconstitution of the regulatory complex of AQP-1. AQP-1 and Galphai3 have been implicated in GTP-induced gating of water in zymogen granules (ZG), the secretory vesicles in exocrine pancreas. In the present study, detergent-solubilized ZGs immunoprecipitated with monoclonal AQP-1 antibody, co-isolates AQP-1, PLA2, Galphai3, potassium channel IRK-8, and the chloride channel ClC-2. Exposure of ZGs to either the potassium channel blocker glyburide, or the PLA2 inhibitor ONO-RS-082, blocked GTP-induced ZG swelling. RBC known to possess AQP-1 at the plasma membrane, swell on exposure to the Galphai-agonist mastoparan, and respond similarly to ONO-RS-082 and glyburide, as ZGs. Liposomes reconstituted with the AQP-1 immunoisolated complex from solubilized ZG, also swell in response to GTP. Glyburide or ONO-RS-082 abolished the GTP effect. Immunoisolate-reconstituted planar lipid bilayers demonstrate conductance, which is sensitive to glyburide and an AQP-1 specific antibody. Our results demonstrate a Galphai3-PLA2 mediated pathway and potassium channel involvement in AQP-1 regulation.


Assuntos
Aquaporinas/isolamento & purificação , Aquaporinas/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Fosfolipases A/metabolismo , Vesículas Secretórias/metabolismo , Aminobenzoatos/farmacologia , Animais , Anticorpos Monoclonais/metabolismo , Aquaporina 1 , Água Corporal/metabolismo , Canais de Cloro CLC-2 , Canais de Cloreto/análise , Clorobenzoatos , Cinamatos/farmacologia , Eletrofisiologia , Eritrócitos/química , Eritrócitos/metabolismo , Eritrócitos/ultraestrutura , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/análise , Glibureto/farmacologia , Fosfolipases A2 do Grupo II , Hipoglicemiantes/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/antagonistas & inibidores , Microscopia de Força Atômica , Peptídeos , Fosfolipases A/análise , Fosfolipases A2 , Canais de Potássio Corretores do Fluxo de Internalização/análise , Ratos , Vesículas Secretórias/química , Transdução de Sinais , Nitrato de Prata/farmacologia , Venenos de Vespas/farmacologia , ortoaminobenzoatos
17.
J Biol Chem ; 278(52): 53098-104, 2003 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-14525992

RESUMO

Opioid-like peptides mediate analgesia and induce behavioral effects such as tolerance and dependence by ligand-receptor-mediated mechanisms. The classical opioid prohormones can generate several bioactive peptides, and these divergent families of prohormones share a common well conserved ancestral opioid motif (Tyr-Gly-Gly-Phe). Evidence from pharmacological and molecular cloning studies indicates the presence of multiple isoforms of opioid ligands and receptors that are as yet uncharacterized. To identify potential new members we used the opioid motif as an anchor sequence and isolated two distinct isoforms (Xen-dorphins A and B) of an opioid prohormone from Xenopus laevis brain cDNA library. Xen-dorphin prohormones can generate multiple novel opioid ligands distinct from the known members of this family. Both isoforms are present in a wide variety of tissues including the brain. Two potential bioactive peptides, Xen-dorphin-1A and -1B, that were chemically synthesized showed opioid agonist activity in frog and rat brain membranes using a [35S]GTPgammaS assay. Initial radioligand binding experiments demonstrated that Xen-dorphin-1B binds with high affinity to opioid receptor(s) and with potential preference to the kappa-opioid receptor subtype. Cloning of the Xen-dorphin prohormone provides new evidence for the potential presence of other members in the opioid peptide superfamily.


Assuntos
Encefalinas/genética , Hormônios Peptídicos/química , Hormônios Peptídicos/genética , Precursores de Proteínas/química , Precursores de Proteínas/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Membrana Celular/metabolismo , Clonagem Molecular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Encefalinas/química , Biblioteca Gênica , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Hormônios/metabolismo , Cinética , Ligantes , Dados de Sequência Molecular , Isoformas de Proteínas , Ratos , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...